Hydrogen Deformation Vibrations1)

By Ichiro Nakagawa and San-ichiro Mizushima

(Received May 18, 1955)

Introduction

The normal vibrations of molecules can conveniently be grouped into hydrogen vibrations and skeletal vibrations2). Of the former the stretching vibrations are observed in the 3 μ region sufficiently separated from skeletal frequencies, whereas the deformation vibrations appear in a region in which many skeletal vibrations give infrared and Raman frequencies. Therefore, it is desirable to distinguish the hydrogen deformation vibrations from the skeletal vibrations for the interpretation of the vibrational spectra in relation to the structure of molecules³⁾. present calculation has been made with the object of aiding in the assignment of these hydrogen deformation vibrations.

Outline of the Calculation

The calculation was made by Wilson's method⁴, according to which we set up a secular equation of the type:

$$|\mathbf{GF} - \mathbf{E}\lambda| = 0$$
,

where G and F are, respectively, the kinetic and the potential energy matrices. In this calculation we consider only that part of a molecule which is directly connected to the CH, CH₂, and CH₃ groups under consideration, because Nakagawa has shown that there is, in general, not much coupling between the hydrogen deformation vibrations and the skeletal vibrations⁵⁾. For example, when we calculate the CH₂ deformation frequencies of CH₃CH₂Cl, we reduce the problem to the vibrations of C-CH₂-Cl.

The symmetry coordinates ${\boldsymbol S}$ obtained from the internal coordinates ${\boldsymbol R}$ by a linear transformation:

S = UR

are shown in Table I. Here U is an orthogonal matrix, α is a carbon valence angle, and 1, 2, 3, and 4 (subscripts) refer to the four bonds of carbon atom (see Fig. 1). For example, α_{12}

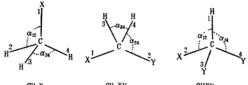


Fig. 1. Internal coordinates of CH₃X, CH₂XY and CHXY₂.

denotes the carbon valence angle formed by the first and second bonds. The mode of each hydrogen deformation vibration is understood from the mathematical expression of the corresponding symmetry coordinate shown in Table I⁽¹⁾.

TABLE I
SYMMETRY COORDINATES OF HYDROGEN
DEFORMATION VIBRATIONS

Mole- cule	Vibrational mode	Symmetry coordinate
CH ₃ X	CH ₃ degenerate	$\begin{cases} \frac{\Delta(2\alpha_{34} - \alpha_{23} - \alpha_{24})/\sqrt{6}}{\Delta(\alpha_{23} - \alpha_{24})/\sqrt{2}} \end{cases}$
	CH ₃ symmetric	$ \frac{\Delta(\alpha_{12} + \alpha_{13} + \alpha_{14} - \alpha_{23} - \alpha_{24})}{-\alpha_{34}} / \sqrt{6} $
	CH ₃ rocking	$\begin{cases} A(2\alpha_{12} - \alpha_{13} - \alpha_{14})/\sqrt{6} \\ A(\alpha_{13} - \alpha_{14})/\sqrt{6} \end{cases}$
	CH ₂ bending	$\Delta (4\alpha_{34} - \alpha_{13} - \alpha_{14} - \alpha_{23})$ $-\alpha_{24} \sqrt{20}$
CH_2X_2 ,	CH ₂ wagging	$\Delta(\alpha_{13}+\alpha_{14}-\alpha_{23}-\alpha_{24})/2$
CH ₂ XY	CH ₂ twisting	$\Delta(\alpha_{13}-\alpha_{14}-\alpha_{23}+\alpha_{24})/2$
	CH ₂ rocking	$\Delta(\alpha_{13}-\alpha_{14}+\alpha_{23}-\alpha_{24})/2$
CHX ₃ , CHXY ₂	CH bending	$\begin{cases} \Delta(2\alpha_{12} - \alpha_{13} - \alpha_{14})/\sqrt{6} \\ \Delta(\alpha_{13} - \alpha_{14})/\sqrt{2} \end{cases}$

The matrices G_S and F_S in symmetry coordinates are obtained from the matrices G_R and F_R in internal coordinates through the transformations:

$$G_{S} = UG_{R}U'_{A}$$

 $F_{S} = UF_{R}U'_{A}$

¹⁾ A part of this paper was presented at Gordon Research Conference on Infrared Spectroscopy, Meriden, New Hampshire, U.S.A. August 1054

New Hampshire, U.S.A. August, 1954.

2) See, e.g., S. Mizushima, "Structure of Molecules and Internal Rotation", Academic Press, New York (1954; I. Nakagawa and S. Mizushima, J. Chem. Phys., 21, 2195 (1953).

³⁾ As to previous researches on hydrogen deformation vibrations, see, e.g., N. Sheppard, J. Chem. Phys., 16, 690 (1948); 17, 74 (1949); R.S. Rasmussen, J. Chem. Phys., 16, 712 (1948).

⁴⁾ E.B. Wilson, J. Chem. Phys., 7, 1047 (1939); 9, 76 (1941).

⁵⁾ I. Nakagawa, J. Chem. Soc. Japan, 75, 178, 535 (1954).

⁶⁾ The modes of these deformation vibrations are shown diagramatically in reference 5.

where U' is the transpose of U.

The diagonal terms $G_{\rm SS}$ of G-matrices are shown in Table II, where $\mu_{\rm C}$, $\mu_{\rm H}$, $\mu_{\rm X}$ and $\mu_{\rm Y}$ are the reciprocals of masses of the C, H, X and Y atoms, and $r_{\rm H}$, $r_{\rm C}$, $r_{\rm X}$ and $r_{\rm Y}$ are the reciprocals of the C-H, C-C, C-X and C-Y bond lengths. Furthermore, all the carbon valence angles are assumed to be tetrahedral. The underlined parts of the expressions of $G_{\rm SS}$ are independent of X and Y and contain $\mu_{\rm H}$ which makes the diagonal terms much larger than the cross terms containing the reciprocals of masses of heavier atoms. Therefore, we may neglect the cross terms of G-matrices in the approximate calculation of hydrogen deformation frequencies.

In the case of F-matrices the ratio of diagonal terms to cross terms depends on the nature of the potential function. We used the function of the Urey-Bradley type⁷⁾, from which the diagonal terms of F-matrices are calculated as shown in Table II, where

$$J_{\text{HH}} = R_{\text{H}}^2 (H_{\text{HCH}} + 2/5F_{\text{H}} \dots_{\text{H}}),$$

 $J_{\text{HX}} = R_{\text{H}}R_{\text{X}} (H_{\text{HCX}} + c_{\text{HX}}F_{\text{H}} \dots_{\text{X}}).$

and

$$\begin{split} c_{\rm HX} = & tt_1 \! + \! 1/10 \, ss_1 \\ t = & (2 \, \sqrt{2/3}) R_{\rm X}/q_{\rm HX}, \\ t_1 = & (2 \, \sqrt{2/3}) R_{\rm H}/q_{\rm HX}, \\ s = & (1/q_{\rm HX}) (R_{\rm H} \! + \! 1/3 \, R_{\rm X}), \\ s_1 = & (1/q_{\rm HX}) (R_{\rm X} \! + \! 1/3 \, R_{\rm H}), \\ q_{\rm HX} = & (R_{\rm H}^2 + R_{\rm X}^2 \! + \! 2/3 \, R_{\rm H} R_{\rm X})^{\frac{1}{2}}. \end{split}$$

Here $H_{\rm HCH}$ and $H_{\rm HCX}$ are force constants for the deformation of the HCH and HCX angles, $F_{\rm H...H}$ and $F_{\rm H...X}$ those for the changes of distances between the two nonbonded H atoms and between the nonbonded H and X atoms, $R_{\rm H}$ and $R_{\rm X}$ the C-H and C-X bond lengths, and k's the intramolecular tensions⁷). The values of force constants and intramolecular tensions are shown in Table III^{2,8}).

Table II Diagonal terms of G- and F-matrices, Gss and Fss

Molecule	Vibrational mode	G_{SS}	F_{SS}
	CH ₃ degenerate	$[(5/2)\mu_{\rm H} + (8/3)\mu_{\rm C}]r_{\rm H}^2$	$J_{\rm HH} + (1/2\sqrt{2})k_{\rm I}$
CH_3X	CH ₃ symmetric	$[2\mu_{ m H} + (16/3)\mu_{ m C}]r_{ m H}^2$	$(1/2)(J_{\rm HH} + J_{\rm HX}) + (3/2\sqrt{2})k_{\rm I}$
	CH ₃ rocking	$\frac{[\mu_{\rm H} + (1/6)\mu_{\rm C}]r_{\rm H}^2 + (3/2)\mu_{\rm X}r_{\rm X}^2 + \mu_{\rm C}[(3/2)}{\times r_{\rm X}^2 + r_{\rm H}r_{\rm X}}]$	$J_{\mathrm{HX}} + (1/2\sqrt{2})k_{\mathrm{I}}$
	CH ₂ bending	$\frac{[(5/2)\mu_{\rm H} + (10/3)\mu_{\rm C}]r_{\rm H}^2 + (1/10)\mu_{\rm X}r_{\rm X}^2}{+(2/15)\mu_{\rm C}r_{\rm Y}^2 - (4/3)\mu_{\rm C}r_{\rm H}r_{\rm X}}$	$(4/5)J_{\text{HH}} + (1/5)J_{\text{HX}} + (3/10\sqrt{2})k_2$
CH ₂ X ₂	CH ₂ wagging	$\frac{[(3/2)\mu_{\rm H} + 3\mu_{\rm C}]r_{\rm H}^2 + (1/2)\mu_{\rm X}r_{\rm X}^2 + \mu_{\rm C}[(1/3)r_{\rm X}^2]}{[(3/2)\mu_{\rm H} + 3\mu_{\rm C}]r_{\rm H}^2 + (1/2)\mu_{\rm X}r_{\rm X}^2 + \mu_{\rm C}[(1/3)r_{\rm X}^2]}$	$J_{\mathrm{HX}} + (3/2\sqrt{2})k_2$
	CH ₂ twisting	$+2r_{ m H}r_{ m X}$] $(3/2)\mu_{ m H}r_{ m H}^2 + (3/2)\mu_{ m X}r_{ m X}^2$	$J_{ m HX} - (1/2 V_2) k_2$
	CH ₂ rocking	$\frac{[(1/2)\mu_{\rm H} + (1/3)\mu_{\rm C}]r_{\rm H}^2 + (3/2)\mu_{\rm X}r_{\rm X}^2 + \mu_{\rm C}(3r_{\rm X}^2 + 2r_{\rm H}r_{\rm X})}$	$J_{\rm HX} + (3/2\sqrt{2})k_2$
	CH₂ bending	$\frac{\left[(5/2)\mu_{\rm H} + (10/3)\mu_{\rm C}\right]r_{\rm H}^2 + (1/20)(\mu_{\rm X}r_{\rm X}^2)}{+\mu_{\rm Y}r_{\rm Y}^2) + (1/20)\mu_{\rm C}(r_{\rm X}^2 + r_{\rm Y}^2)}$	$(4/5)J_{\text{HH}} + (1/10)(J_{\text{HX}} + J_{\text{HY}}) + (3/10\sqrt{2})k_2$
CH_2XY	CH ₂ wagging	$ \begin{array}{c} + (1/30)\mu_{\rm C} r_{\rm X} r_{\rm Y} - (2/3)\mu_{\rm C} (r_{\rm H} r_{\rm X} + r_{\rm H} r_{\rm Y}) \\ \\ [(3/2)\mu_{\rm H} + 3\mu_{\rm C}] r_{\rm H}^2 + (1/4)(\mu_{\rm X} r_{\rm X}^2 + \mu_{\rm Y} r_{\rm Y}^2) \\ \\ + (1/4)\mu_{\rm C} (r_{\rm X}^2 + r_{\rm Y}^2) - (1/6)\mu_{\rm C} r_{\rm X} r_{\rm Y} \\ \\ + \mu_{\rm C} (r_{\rm H} r_{\rm X} + r_{\rm H} r_{\rm Y}) \end{array} $	$(1/2)(J_{\text{HX}} + J_{\text{HY}}) + (3/2\sqrt{2})k_2$

⁷⁾ T. Shimanouchi, J. Chem. Phys., 17, 245, 734, 848 (1949).

See also T. Shimanouchi, J. Chem. Soc. Japan, 74,
 (1953); I. Nakagawa and S. Mizushima, J. Chem. Phys., 22, 759 (1954); I. Nakagawa, J. Chem. Soc. Japan, 76, 540 (1955).

Molecule	Vibrational mode	. G _{SS}	$F_{ m SS}$
	CH2 twisting	$(3/2)\mu_{\rm H} r_{\rm H}^2 + (3/4)(\mu_{\rm X} r_{\rm X}^2 + \mu_{\rm Y} r_{\rm Y}^2)$	$(1/2)(J_{\text{HX}} + J_{\text{HY}}) - (1/2\sqrt{2})k_2$
	CH ₂ rocking	$\begin{aligned} &+ (3/4)\mu_{\mathrm{C}}(r_{\mathrm{X}}^{2} + r_{\mathrm{Y}}^{2}) - (3/2)\mu_{\mathrm{C}}r_{\mathrm{X}}r_{\mathrm{Y}} \\ &+ (1/3)\mu_{\mathrm{C}}]r_{\mathrm{H}}^{2} + (3/4)(\mu_{\mathrm{X}}r_{\mathrm{X}}^{2} + \mu_{\mathrm{Y}}r_{\mathrm{Y}}^{2}) \\ &+ (3/4)\mu_{\mathrm{C}}(r_{\mathrm{X}}^{2} + r_{\mathrm{Y}}^{2}) + (3/2)\mu_{\mathrm{C}}r_{\mathrm{X}}r_{\mathrm{Y}} \\ &+ \mu_{\mathrm{C}}(r_{\mathrm{H}}r_{\mathrm{X}} + r_{\mathrm{H}}r_{\mathrm{Y}}) \end{aligned}$	$(1/2)(J_{\text{HX}} + J_{\text{HY}}) + (3/2\sqrt{2})k_2$
CHX3	CH bending	$\frac{[(3/2)\mu_{\rm H} + (3/2)\mu_{\rm C}]r_{\rm H}^2 + \mu_{\rm X}r_{\rm X}^2 + \mu_{\rm C}[(1/6)r_{\rm X}^2}{+r_{\rm H}r_{\rm Y}]}$	$J_{\mathrm{HX}} + (1/2\sqrt{2})k_3$
	CH bending (A')	$\frac{[(3/2)\mu_{\rm H} + (3/2)\mu_{\rm C}]r_{\rm H}^2 + (2/3)\mu_{\rm X}r_{\rm X}^2}{(4.2)^2 + (2/3)\mu_{\rm C}r_{\rm X}^2}$	$(2/3)J_{\text{HX}} + (1/3)J_{\text{HY}} + (1/2\sqrt{2})k_3$
CHVV		$+ (1/3)\mu_{Y}r_{Y}^{2} + \mu_{C}[(2/3)r_{H}r_{X} + (1/3)r_{H}r_{Y} + (2/3)r_{Y}^{2} - (10/9)r_{Y}r_{Y}]$	•
CHXY ₂	CH bending (A'')	$+(11/18)r_{\rm Y}^2]\\ \frac{[(3/2)\mu_{\rm H}+(3/2)\mu_{\rm C}]r_{\rm H}^2+\mu_{\rm Y}r_{\rm Y}^2+\mu_{\rm C}[(1/6)r_{\rm Y}^2\\ +r_{\rm H}r_{\rm Y}]}$	$J_{\mathrm{HY}} + (1/2\sqrt{2})k_3$
	CH ₃ degenerate	(GSS)0	$J_{\mathrm{HH}}+(1/2\sqrt{2})k_{1}$
CH_3 – CH_3^*	CH ₃ symmetric	$(G_{SS})_0$	$(1/2)(J_{\rm HH}+J_{\rm HC})+(3/2\sqrt{2})k_1$
	CH ₃ rocking	$(G_{\rm SS})_0 \pm \mu_{\rm C}(3r_{\rm C}^2 + r_{\rm C}r_{\rm H})\cos\theta$	$J_{\mathrm{HC}}+(1/2\sqrt{2})k_{\mathrm{I}}$
	CH ₂ bending	$(G_{SS})_0 \pm \left[-2\mu_{\rm C} \{ (2/3) r_{\rm C} r_{\rm H} - (1/10) r_{\rm C}^2 \right. \\ \left (1/30) r_{\rm C} r_{\rm X} \} \cos \theta \right]$	$(4/5)J_{\text{HH}} + (1/10)(J_{\text{HX}} + J_{\text{HC}}) + (3/10\sqrt{2})k_2$
XCH ₂	CH ₂ wagging	$(G_{\rm SS})_0 \pm (1/2)\mu_{\rm C}[r_{\rm C}^2 + 2r_{\rm C}r_{\rm H} - (1/3)r_{\rm C}r_{\rm X}]\cos\theta$	$(1/2)(J_{\text{HX}} + J_{\text{HC}}) + (3/2\sqrt{2})k_2$
-CH ₂ X**	CH2 twisting	$(G_{SS})_0 \pm [-(3/2)\mu_{\rm C}(r_{\rm C}^2 - r_{\rm C}r_{\rm X})\cos\theta]$	$(1/2)(J_{\rm HX}+J_{\rm HC})-(1/2\sqrt{2})k_2$
	CH ₂ rocking	$(G_{SS})_0 \pm \left[-(3/2)\mu_C \{r_C^2 + r_C r_X + (2/3)r_C r_H\} \cos \theta \right]$	$(1/2)(J_{\text{HX}} + J_{\text{HC}}) + (3/2\sqrt{2})k_2$

^{*} $(G_{SS})_0$ signifies G_{SS} of CH_3X for X=C. The signs+and-refer, respectively, to the symmetric (A) and the anti-symmetric (B) vibrations to the C_2 axis. The azimuthal angle θ is taken as zero for the trans position.

Table III Values of force constants H and F in 10^5 dyn./cm. and intramolecular tension k in 10^{-11} dyn. cm.

Deformation constant H	Repulsion constant	$\begin{array}{c} \text{Intramolecular tension} \\ k \end{array}$	
Н-С-Н 0.40	H(C)H 0.10	CH ₄ 0.	.00
H-C-F 0.06	H(C)F 1.15	$CH_{3}F$ 0.10 $CH_{2}F_{2}$ 0.20 CHF_{3} 0.35 CF_{4} 0.	.45
H-C-C1 0.05	H(C)Cl 0.80	CH ₃ Cl 0.05 CH ₂ Cl ₂ 0.10 CHCl ₃ 0.20 CCl ₄ 0.	.26
H-C-Br 0.04	H(C)Br 0.65	CH ₃ Br 0.03 CH ₂ Br ₂ 0.07 CHBr ₃ 0.15 CBr ₄ 0.	.25
H-C-I 0.04	H(C)I 0.52	$CH_{3}I$ 0.02 $CH_{2}I_{2}$ 0.04 CHI_{3} 0.10	
H-C-CX ₃ 0.15	$H(C)CX_3$ 0.40	CH ₃ CX ₃ 0.05	
H-C-CH ₃ 0.25	H(C)CH ₃ 0.50	CH(CH ₃) ₃ 0.03 C(CH ₃) ₄ 0	.04
H-C-C(≡) 0.21	H(C)C(=) 0.50	CH ₃ CN 0.04 CH ₂ (CN) ₂ 0.07	
H-C-N 0.20	H(C)N 0.60	CH ₃ NC 0.05	

^{**} $(G_{SS})_0$ signifies G_{SS} of CH_2XY for Y=C.

Although the diagonal terms of F-matrices are not always large as compared with the cross terms, approximate calculations of hydrogen deformation frequencies have been made from the product $G_{SS}F_{SS}$ of the diagonal terms shown in Table II. The difference between the computed and the observed frequencies has been found to be less than $5\%^{9}$.

In the higher approximations we have taken into account the effect of the cross terms in the following form:

$$(GF)_{SS} = G_{SS}F_{SS} + a,$$

 $\lambda = (GF)_{SS} + b,$

where a and b are the correction terms⁹⁾.

Results for CH Deformation Frequencies

The calculations have been made for many molecules, including those of methane and ethane derivatives and their deuterated compounds. The computed values have been shown to be in good agreement with those observed¹⁰⁾. The frequency ranges of hydrogen deformation vibrations thus obtained are shown in Table IV, where those of fluorine compounds have been omitted, because they show abnormal values¹⁰⁾.

The inspection of the expressions of G_{SS} and F_{SS} shown in Table II, together with the numerical values given in Table IV, gives us information on the specific features of hydrogen deformation vibrations, which are useful in the assignment of these vib-

TABLE IV

THE FREQUENCY RANGES OF HYDROGEN
DEFORMATION VIBRATIONS IN cm⁻¹

Molecule*	Vibrational mode	Frequency range
CH ₃ X	CH ₃ degenerate CH ₃ symmetric CH ₃ rocking	ca. 1450 1250–1400 900–1150
CH ₂ X ₂ & CH ₂ X Y	CH ₂ bending CH ₂ wagging CH ₂ twisting CH ₂ rocking	1350-1450 1100-1350 1000-1300 700-1000
CHX ₃ & CHXY ₂	CH bending	1100-1350
CH ₃ CX ₃	CH ₃ degenerate CH ₃ symmetric CH ₃ rocking	ca. 1450 1370–1390 1000–1100

⁹⁾ I. Nakagawa, J. Chem. Soc. Japan, 75, 1259 (1954).

Molecule*	Vibrational mode	Frequency range
	CH ₃ degenerate (A' & A'')	ca. 1450
CH_3CHX_2 & CH_3CH_2X	CH ₃ symmetric	1370–1390
	CH ₃ rocking (A' & A'')	1000-1100
	CH ₃ degenerate. (A' & A'')	ca. 1420
CH_3COX	CH ₃ symmetric	ca. 1360
	CH_3 rocking $(A' \& A'')$	1000–1100
	CH ₃ degenerate (A' & A'')	ca. 1450
	CH_3 symmetric $(A' \& A'')$	1370–1390
$(CH_3)_2CHX$	CH ₃ rocking (A' & A'')**	900–1150
	C-C stretching**	870–890 (A'), 1120–1140 (A'')
	CH bending	variable (A'), 1320-1340 (A'')
	CH ₃ degenerate (A ₁ & E)	ca. 1450
(CH ₃) ₃ CX	CH_3 symmetric $(A_1 \& E)$	1370–1390
(CH3)3CA	CH_3 rocking $(A_1 \& E)^{**}$	900–1150
	$C-C$ stretching $(A_1 \& E)^{**}$	$800-810 (A_1),$ $1220-1240 (E)$
	CH ₂ bending	1400–1450
	CH ₂ wagging	1150–1350
XCH_2CH_2X	CH ₂ twisting	1000-1300
	CH ₂ rocking	$(700-1000 \ B_{\rm g} > A > B > A_{\rm u}$

- * Fluorine compounds are excluded.
- ** The C-C stretching and CH₃ rocking vibrations are coupled with each other considerably in these cases.

rations. Some of these features are listed in the following:

- (1) The CH₃ degenerate deformation vibrations and the CH₂ bending vibrations appear in narrow frequency regions. Furthermore, these regions are separated from those of other hydrogen deformation vibrations.
- (2) The CH₃ symmetric deformation vibrations also appear in a narrow frequency range, when this group is directly connected to a carbon atom as CH₃-C-.
- (3) The frequency values of the hydrogen deformation vibrations in the same series (e.g. CH₃X, CH₂X₂ and CHX₃) decrease in the following order: CH₃ degenerate deformation >CH₂ bending>CH₃ symmetric deformation >CH₂ wagging>CH bending>CH₂ twisting >CH₃ rocking >CH₂ rocking. In some cases

¹⁰⁾ I. Nakagawa, ibid., 76, 540 (1955).

the order of the CH₂ wagging frequency and the CH₃ symmetric deformation frequency may be reversed.

- (4) The CH bending frequencies of CHX_3 and CHY_3 , which are degenerate, are split into two frequencies A' and A'' in $CHXY_2$ where A'' has nearly the same frequency as the degenerate frequency of CHY_3 and A' has a value lying between those of CHX_3 and CHY_3 but closer to that of CHX_3 .
- (5) According to the result of the similar calculation made for molecules of the type, XH₂C-CH₂X, the two deformation frequencies, one symmetric and the other antisymmetric to the C_2 axis, are not much different from each other and are not sensitive to the change of azimuthal angle of the internal rotation about the C-C axis, except for the CH₂ rocking frequencies. Furthermore, the selection rules for the rocking frequencies are quite different for the trans, gauche and cis forms. The frequency values of the rocking vibrations decrease in the following order: $B_g(trans) > A(gauche) > B(gauche) > A_u$ (trans). The observation of rocking frequencies provides important experimental data of the optical isomerism of a new type ·described in previous notes¹¹⁾.

NH₃-Deformation Frequencies in Ammine Complexes

When the NH₃ group is coordinated about a central metal atom in coordination complexes such as [Co(NH₃)₆]Cl₃, we expect the appearance of three deformation frequencies similar to those of the CH₃ deformation frequencies. Actually we have found in these complexes three frequencies at about 1610, 1330 and 830 cm⁻¹ and these are assigned, respectively, to the degenerate deformation, symmetric deformation and rocking vibrations as shown in a previous paper¹². There we did not describe the procedure of the calculation at all, but it is easily seen that this is quite similar to that of the calculation of CH₃ deformation vibrations of

Table V
The values of force constants H and F in 10^5 dynes/cm. and intramolecular tension k in 10^{-11} dyn, cm.

H	I	F		k
H-N-H	0.54	H(N)H	0.06	-0.04
H-N-Co	0.18	H (N) Co	0.10	-0.04

¹¹⁾ J.V. Quagliano and S. Mizushima, J. Am. Chem. Soc., 75, 6084 (1953). See also S. Mizushima, I. Nakagawa, I. Ichishima and T. Miyazawa, J. Chem. Phys., 22, 1614 (1954).

CH₃X shown in Table I. The force constants used in this calculation are shown in Table V.

It is to be noted that of these five constants $H_{\rm HNH}$, $F_{\rm H...(N)...H}$ and k can also be used for the calculation of the normal frequencies of ammonia, NH₃, ammonium ion, NH₄⁺ and their deuteration products, ND₃ and ND₄⁺. Therefore, the reasonableness of their values can be checked by the normal frequency calculations for these compounds and ions. As shown in Table VI the calculated values are in good agreement with the observed values and consequently, these constants are concluded to have reasonable values.

TABLE VI*
CALCULATED AND OBSERVED FREQUENCIES
IN cm⁻¹ OF NH₃, ND₃, NH₄+ AND ND₄+

114 4	01 1	113, 1123,	Till Ali	7 1124	
	N	NH_3		D_3	
	Calc.	Obs.	Calc.	Obs.	
A_1	3333	3336	2374	2419	
	951	950	724	749	
\boldsymbol{E}	3410	3414	2506	2555	
	1630	1628	1188	1191	
	N	NH ₄ +		ND ₄ +	
	Calç.	Obs.	Calc.	Obs.	
A_1	3041	3041	2150	2214	
\boldsymbol{E}	1710	1710	1209	1215	
T	3138	3138	2321	2350	
	1403	1403	1049	1066	
				,	

* Evidently for the calculation of these frequencies the N-H stretching force constants (6.30×10⁵ dynes/cm. for NH₃ and 5.26×10⁵ dynes/cm. for NH₄+) are needed in addition to the three constants mentioned above.

Using the force constants shown in Table V, the frequencies of the NH₃ degenerate deformation, symmetric deformation and rocking vibrations of [Co(NH₃)₆]Cl₃ have been calculated and compared with the observed values in Table VII. The agreement between the computed and observed values is good and consequently our assign-

TABLE VII

CALCULATED AND OBSERVED DEFORMATION
FREQUENCIES IN CM⁻¹ OF THE NH₃ AND
ND₃ LIGANDS

Vibrational mode	[Co(NH ₃) ₆]Cl ₃		[Co(ND ₃) ₆]Cl ₃	
	Calc.	Obs.	Calc.	Obs.
Degenerate	1579	1610	1156	1162
Symmetric	1340	1330	1021	1024
Rocking	854	835	628	outside the NaCl region

^{. 12)} S. Mizushima, I. Nakagawa and J.V. Quagliano, J. Chem. Phys., 23, 1367 (1955).

ment has been shown to be correct. Furthermore, this assignment has been checked by observing the isotopic shift of these frequencies¹²⁾. As shown in the same table, the observed frequencies of the deformation vibrations of the ND₃ ligand are in good agreement with those calculated from the isotopic relations.

Some authors have explained these bands as arising from the metal-ligand vibrations of the octahedral cation¹³⁾. However, from our calculation it has been shown that the assignment made in this paper is more reasonable.

From the result of the present research we can conclude that the metal-to-ligand bond should be fairly covalent in metal ammine complexes. If this bond were ionic, we could conclude that there are no rocking vibrations of the NH₃ group.

Summary

The CH, CH₂ and CH₃ deformation frequencies in various organic compounds and the NH₃ deformation frequencies in metal ammine complexes have been calculated based on the Urey-Bradley field. The fact that diagonal terms of G-matrices for these vibrations are much larger than the cross terms makes the approximate calculation quite easy. The frequency range of each of these vibrations has been tabulated and their specific features have been pointed out, which will aid in the assignment of the frequencies observed for many organic compounds and metal ammine complexes.

Chemical Laboratory, Faculty of Science, The University, of Tokyo, Tokyo

¹³⁾ H.G. Hill and A.F. Rosenberg, J. Chem. Phys., 22, 148 (1954).